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1. Introduction 

    The goal of this study is to provide a 

comprehensive review of different clustering 

techniques in data mining. Clustering is a 

division of data into groups of similar 

objects. Each group, called cluster, consists 

of objects that are similar between 

themselves and dissimilar to objects of other 

groups. Representing data by fewer clusters 

necessarily loses certain fine details but 

achieves simplification. It represents many 

data objects by few clusters, and hence, it 

models data by its clusters. Data modeling 

puts clustering in a historical perspective 

rooted in mathematics, statistics, and 

numerical analysis. From a machine learning 

perspective clusters correspond to hidden 

patterns, the search for clusters is 

unsupervised learning, and the resulting 

system represents a data concept. Therefore, 

clustering is unsupervised learning of a 

hidden data concept. Data mining deals with 

large databases that impose on clustering 

analysis additional severe computational 
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ABSTRACT 

 

Clustering is the subject of active research in several fields such as 

statistics, pattern recognition, and machine learning. Data mining adds 

to clustering the complications of very large datasets with very many 

attributes of different types. This imposes unique computational 

requirements on relevant clustering algorithms. A variety of algorithms 

have recently emerged that meet these requirements and were 

successfully applied to real-life data mining 
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requirements. These challenges led to the 

emergence of powerful broadly applicable 

data mining clustering methods [1]. 

      Data Clustering is considered an 

interesting approach for finding similarities 

in data and putting similar data into groups. 

Clustering partitions a data set into several 

groups such that the similarity within a 

group is larger than that among groups [2]. 

The idea of data grouping, or clustering, is 

simple in its nature and is close to the 

human way of thinking; whenever we are 

presented with a large amount of data, we 

usually tend to summarize this huge number 

of data into a small number of groups or 

categories in order to further facilitate its 

analysis. Moreover, most of the data 

collected in many problems seem to have 

some inherent properties that lend 

themselves to natural groupings. 

Nevertheless, finding these groupings or 

trying to categorize the data is not a simple 

task for humans unless the data is of low 

dimensionality. 

     This is why some methods in soft 

computing have been proposed to solve this 

kind of problem. Those methods are called 

“Data Clustering Methods” and they are the 

subject of this paper. Clustering algorithms 

are used extensively not only to organize 

and categorize data, but are also useful for 

data compression and model construction. 

By finding similarities in data, one can 

represent similar data with fewer symbols 

for example. Also if we can find groups of 

data, we can build a model of the problem 

based on those groupings. Another reason 

for clustering is to discover relevance 

knowledge in data. Francisco Azuaje et al. 

[3] implemented a Case Based Reasoning 

(CBR) system based on a Growing Cell 

Structure (GCS) model. Data can be stored 

in a knowledge base that is indexed or 

categorized by cases; this, is what is called a 

Case Base. Each group of cases is assigned 

to a certain category. Using a Growing Cell 

Structure (GCS) data can be added or 

removed based on the learning scheme used.  

 

Later when a query is presented to the 

model, the system retrieves the most 

relevant cases from the case base depending 

on how close those cases are to the query. 

2.  Data Clustering Overview 

      In this section, four of the most 

representative off-line clustering techniques 

are reviewed: 

A. -means (or Hard C-means) Clustering, 

B. -means Clustering, 

C.Mountain Clustering, and 

D.  Clustering. 

      These techniques are usually used in 

conjunction with radial basis function 

networks (RBFNs) and Fuzzy Modeling.   

The first technique is K-means clustering 

[4] (or Hard C-means clustering, as 

compared to Fuzzy C-means clustering.) 

This technique has been applied to a variety 

of areas, including image and speech data 

compression [5, 6] data preprocessing for 

system modeling using radial basis function 

networks, and task decomposition in 

heterogeneous neural network architectures 

[7]. This algorithm relies on finding cluster 

centers by trying to minimize a cost function 

of dissimilarity (or distance) measure. 

      The second technique is Fuzzy C-means 

clustering, which was proposed by Bezdek 

in 1973 [1] as an improvement over earlier 

Hard C-means clustering. In this technique 

each data point belongs to a cluster to a 

degree specified by a membership grade. As 

in K-means clustering, Fuzzy C-means 

clustering relies on minimizing a cost 

function of dissimilarity measure. 

      The third technique is Mountain 

clustering, proposed by Yager and Filev [1]. 

This technique 

builds calculates a mountain function 

(density function) at every possible position 

in the data space, and chooses the position 

with the greatest density value as the center 
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of the first cluster. It then destructs the effect 

of the first cluster mountain function and 

finds the second cluster center. This process 

is repeated until the desired numbers of 

clusters have been found. 

      The fourth technique is Subtractive 

clustering, proposed by Chiu [1]. This 

technique is similar to mountain clustering, 

except that instead of calculating the density 

function at every possible position in the 

data space, it uses the positions of the data 

points to calculate the density function, thus 

reducing the number of calculations 

significantly. 

3. Data Clustering Techniques 

      In this section a detailed discussion of 

each technique is presented. 

A.K-means Clustering 

     The K-means clustering, or Hard C-

means clustering, is an algorithm based on 

finding data clusters in a data set such that a 

cost function (or an objection function) of 

dissimilarity (or distance) measure is 

minimized [1]. In most cases this 

dissimilarity measure is chosen as the 

Euclidean distance. 

    The algorithm is presented with a data set, 

Xi, i = 1…, n; it then determines the cluster 

centers Ci and the membership matrix U 

iteratively using the following steps: 

Step 1: Initialize the cluster center Ci, i= 

1…, c .This is typically done by randomly 

selecting c points from among all of the data 

points. 

Step 2: Determine the membership matrix U 

by Equation (2). 

Step 3: Compute the cost function according 

to Equation (1). Stop if either it is below a 

certain tolerance value or its improvement 

over previous iteration is below a certain 

threshold. 

Step 4: Update the cluster centers according 

to Equation (3). Go to step 2. 

   The performance of the K-means 

algorithm depends on the initial positions of 

the luster enters, thus it is advisable to run 

the algorithm several times, each with a 

different set of initial cluster centers [8, 9].  

 

B. Fuzzy C-means Clustering 

     Fuzzy C-means clustering (FCM), relies 

on the basic idea of Hard C-means 

clustering (HCM), with the difference that in 

FCM each data point belongs to a cluster to 

a degree of membership grade, while in 

HCM every data point either belongs to a 

certain cluster or not. So FCM employs 

fuzzy partitioning such that a given data 

point can belong to several groups with the 

degree of belongingness specified by 

membership grades between 0 and 1. 

However, FCM still uses a cost function that 

is to be minimized while trying to partition 

the data set. 

 

 

 

                          
------- (1) 

                                                                      
--------- (2) 

 

  
----------- (3) 

---------- (4) 

    The algorithm works iteratively through 

the preceding two conditions until the no 

more improvement is noticed. In a batch 

mode operation, FCM determines the cluster 

centers Ci and the membership matrix U 

using the following steps: 
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Step 1: Initialize the membership matrix U 

with random values between 0 and 1 such 

that the constraints in Equation (1) are 

satisfied. 

Step 2: Calculate c fuzzy cluster centers, Ci, 

i= 1…, c , using Equation (3). 

Step 3: Compute the cost function according 

to Equation (2). Stop if either it is below a 

certain tolerance value or its improvement 

over previous iteration is below a certain 

threshold. 

Step 4: Compute a new U using Equation 

(4). Go to step 2. 

     As in K-means clustering, the 

performance of FCM depends on the initial 

membership matrix values; thereby it is 

advisable to run the algorithm for several 

times, each starting with different values of 

membership grades of data points [9]. 

C. Mountain Clustering 

     The mountain clustering approach is a 

simple way to find cluster centers based on a 

density measure called the mountain 

function. This method is a simple way to 

find approximate cluster centers, and can be 

used as a preprocessor for other 

sophisticated clustering methods.  

Step 1: It involves forming a grid on the 

data space, where the intersections of the 

grid lines constitute the potential cluster 

centers, denoted as a set V. 

Step 2: It entails constructing a mountain 

function representing a data density 

measure. The height of the mountain 

function at a point v  V is equal to  

 

 
                                            ------------- (5) 

 

Step 3: It involves selecting the cluster 

centers by sequentially destructing the 

mountain function. The first cluster center 

C1 is determined by selecting the point with 

the greatest density measure. Obtaining the 

next cluster center requires eliminating the 

effect of the first cluster. This is done by 

revising the mountain function: a new 

mountain function is formed by subtracting 

a scaled Gaussian function centered at C1: 

 
                                                          --------- 

(6) 

The subtracted amount eliminates the effect 

of the first cluster. Note that after 

subtraction, the new mountain function new 

mnew (v) reduces to zero at v = C1  

Step 4: After subtraction, the second cluster 

center is selected as the point having the 

greatest value for the new mountain 

function. This process continues until a 

sufficient number of cluster centers are 

attained [9]. 

D. Subtractive Clustering 

      The problem with the previous 

clustering method, mountain clustering, is 

that its computation grows exponentially 

with the dimension of the problem; that is 

because the mountain function has to be 

evaluated at each grid point. Subtractive 

clustering solves this problem by using data 

points as the candidates for cluster centers, 

instead of grid points as in mountain 

clustering. This means that the computation 

is now proportional to the problem size 

instead of the problem dimension. However, 

the actual cluster centers are not necessarily 

located at one of the data points, but in most 

cases it is a good approximation, especially 

with the reduced computation this approach 

introduces [9]. 

Since each data point is a candidate for 

cluster centers, a density measure at data 

point i x is defined as 

 
                                                    ---------- (7) 
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   Where ra is a positive constant 

representing a neighborhood radius. Hence, 

a data point will have a high density value if 

it has many neighboring data points. The 

first cluster center XC1 is chosen as the 

point having the largest density value DC1. 

Next, the density measure of each data point 

Xi is revised as follows: 

                                               
-------- (8) 

     Where rb is a positive constant which 

defines a neighborhood that has measurable 

reductions in density measure. Therefore, 

the data points near the first cluster center 

XC1 will have significantly reduced density 

measure.  

After revising the density function, the next 

cluster center is selected as the point having 

the greatest density value. This process 

continues until a sufficient number of 

clusters are attainted. 

4. Conclusion 

       Four clustering techniques have been 

reviewed in this paper, namely: K-means 

clustering, Fuzzy C-means clustering, 

Mountain clustering, and Subtractive 

clustering. These approaches solve the 

problem of categorizing data by partitioning 

a data set into a number of clusters based on 

some similarity measure. so that the 

similarity in each cluster is larger than 

among clusters. The comparative study done 

here is concerned with the accuracy of each 

algorithm, with care being taken toward the 

efficiency in calculation and other 

performance measures. Finally, the 

clustering techniques discussed here and 

also they can be used in conjunction with 

other neural or fuzzy systems for further 

refinement of the overall system 

performance. 
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