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Abstract 

In parallel mining algorithms for frequent itemsets multiple mechanismare used (for eg.load 

balancing, data distribution, automatic parallelization, and fault tolerance on large clusters). For 

solution to this problem, we propose a new parallel frequent itemsets mining algorithm called FiDoop 

using the MapReduce programming model. FiDoop incorporates the frequent items ultrametric tree 

for achieving reduces storage and avoids building conditional pattern bases, rather than conventional 

FP trees. In FiDoop, we used three MapReduce Jobs are implemented to complete the mining task. In 

third MapReduce job, mappers decompose itemsets independently and reducer constructing small 

ultrametric trees, mining of these trees separately. In this paper, we implement FiDoop on our inhouse 

Hadoop cluster. We show that FiDoop on the cluster is sensitive to data distribution and dimensions, 

because itemsets with different lengths have different decomposition and construction costs. For 

improvingFiDoop’s performance and workload balance metric to measure load balance across the 

cluster’s computing nodes, in this paper we developFiDoop-HD. FiDoop-HD helps to speed up the 

mining performance for high-dimensional data analysis. Extensive experiments using real-world 

celestial spectral data demonstrate that our proposed solution is efficient and scalable. In our proposed 

scheme, we will add various approaches to improving energy efficiency of FiDoop running on 

Hadoop clusters.  

Keywords: MapReduce, Energy efficiency, frequent itemsets, Frequent Items Ultrametric Tree (FIU-

tree), Hadoop cluster, Load balance. 

1. INTRODUCTION 

An elementary necessity for mining for mining association rules is mining frequent itemsets. 

Numerous algorithms exist for frequent itemset mining. Apriori and FP-Growth are the traditional 

method. Apriori is an algorithm for frequent item set mining and association rule learning over 

transactional databases. It proceeds by recognizing the frequent individual items in the database and 

widening them to larger item sets providing those item sets appear adequately often in the database. It 

works with Candidate Generation and Test Approach.Fp-Growth is used to overcome the problem of 

candidate generation. FP-growth is a program to find frequent item sets with the FP-growth algorithm, 

which corresponds to the transaction database as a prefix tree which is enhanced with links that 

organize the nodes into lists referring to the same item. The search is carried out by prognostic the 

prefix tree, working recursively on the result, and trimming the original tree. The implementation also 

supports sifting for closed and maximal item sets with conditional item set repositories, although the 

approach used in the program differs in as far as it used top-down prefix trees rather than FP-trees. 

FP-growth condense a large database into a compact, Frequent-Pattern tree (FP-tree) structure with 

highly reduced, but complete for frequent pattern mining and avoid costly database scans. It develops 

an efficient, FP-tree-based frequent pattern mining method with a divide-and-conquer methodology 

which decomposes mining tasks into smaller ones and avoids candidate generation. The disadvantage 
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of this algorithm consists in the TID_set being too long, taking considerable memory space as well as 

computation time for intersecting the long sets. Incremental data mining is not hold by this 

algorithm.FREQUENT itemsets mining (FIM) is a center issue in association rule mining (ARM), 

grouping mining, and so forth. Accelerating the procedure of FIM is basic and essential, on the 

grounds that FIM utilization represents a huge part of mining time because of its high calculation 

andinput/output (I/O) force. At the point when datasets in present day information mining applications 

turn out to be too much substantial, consecutive FIM calculations running on a solitary machine 

experience the ill effects of execution decay. To address this issue, we research how to perform FIM 

utilizing MapReduce—a generally embraced programming model for preparing enormous datasets by 

misusing the parallelism among registering hubs of a bunch. We demonstrate to appropriate an 

extensive dataset over the group to adjust load over all bunch hubs, accordingly improving the 

execution of parallel FIM. Big information for the most part incorporates information set with sizes 

past the capacity of generally utilized programming devices to catch, oversee and handle information 

inside a fair passed time. Its size is continually moving focus starting 2012 going from a couple of 

Dozen of terabyte to numerous petabytes of information "greatly parallel programming running on 

tens, hundreds, or even a large number of servers". 

2. LITERATURE SURVEY 

Simplified Data Processingon Large Clusters and Execution Overview Large-Scale 

Indexing.MapReduce is a programming model and an associated implementation for processingand 

generating large datasets that is amenable to a broad variety of real-world tasks. Users specify the 

computation in terms of a map and a reduce function, and the underlying runtime system 

automatically parallelizes the computation across large-scale clusters of machines, handles machine 

failures, and schedules inter-machine communication to make efficient use of the network and disks. 

Programmers find the system easy to use: more than ten thousand distinct MapReduce programs have 

been implemented internally at Google over the past four years, and an average of one hundred 

thousand MapReduce jobs are executed on Google’s clusters every day, processing a total of more 

than twenty petabytes of data per day. In this proposed system efficient generation for large itemsets 

by hash method (2) effective reduction on itemsets scan required by the division approach and (3) the 

option of reducing the number of database scans required Our proposed hash and division-based 

techniques.We propose efficient use of Hadoop on heterogeneous clusters as well as on virtual/cloud 

infrastructure, both of which violate the peer-similarity assumption. To this end, we have 

implemented and here present preliminary results of an approach for automatically diagnosing the 

health of nodes in the cluster, as well as the resource requirements of incoming MapReduce jobs. We 

show that the approach can be used to identify abnormally performing cluster nodes and to diagnose 

the kind of fault occurring on the node in terms of the system resource affected by the fault (e.g., CPU 

contention, disk I/O contention). We also describe our future plans for using this approach to increase 

the efficiency of Hadoop on heterogeneous and virtual clusters,with or without faults. 

3. MAPREDUCE-BASED FIDOOP 

In this section, we present the design issues of FiDoop built on the MapReduce framework. Depicts 

the working flow of FiDoop consisting of three MapReduce jobs. Recall that the intermediate results 

provided by the mappers in the third MapReduce job are used to construct FIU trees (see Algorithm 

4). We intentionally keep such intermediate key-value pairs output to make the process flow 

concise.From the aforementioned description of the processes, we show that frequent one-itemsets are 
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directly generated by scanning a database. FiDoop carries out a two-stage process to construct a k-

FIU-tree (2 ≤ k ≤ M) from k-itemsets. In the first stage, k-itemsets are obtained by pruning infrequent 

items of each transaction in the second scan for database. The second stage is the combination of k-

itemsets generated by decomposing all h-itemsets (k < h). Please note that the two-stage process is 

similar to that of the FIUT algorithm, which ensures the correctness of our algorithm. The following 

preliminary findings motivate us to address a pressing issue pertinent to balancing load in FiDoop: 1) 

large itemsets give rise to high-decomposition overhead and 2) and small decomposed itemsets lead to 

a large number of itemsets. To achieve good load balancing performance, we incorporate constraints 

in the shuffling phase of the MapReduce jobs in FiDoop, thereby balancing the number of itemsets 

across reducers (see Section V-A for details on load balancing).multiple input files stored by the 

HDFS across data nodes of a Hadoop cluster. Each mapper sequentially reads each transaction from 

its local input split, where each transaction is stored in the format of pair. Then, mappers compute the 

frequencies of items and generate local one-itemsets. Next, these one-itemsets with the same key 

emitted by different mappers are sorted and merged in a specific reducer, which further produces 

global oneitemsets. Finally, infrequent items are pruned by applying the minsupport; and 

consequently, global frequent one-itemsets are generated and written in the form of pair as the output 

from the first MapReduce job. Importantly, frequent one-itemsets along with their counts are stored in 

a local file named F-list, which becomes the input of the second MapReduce job in FiDoop. 

 

4. IMPLEMENTATION 

Now, we discuss the implementation details of FiDoop. We pay particular attention to the last 

MapReduce job in FiDoop, because the last job is computationally expensive. We show how to 

optimize the performance of the third MapReduce job in two approaches.The decompose() function of 

the third MapReduce job accomplishes the decomposition process. If the length of an itemset is m, the 

time complexity of decomposing the itemset is O(2m).  

 

Fig.1.Effect of FiDoop-HD and Pfp 
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Fig.2.Algorithm for Decomposed string 

Thus, the decomposition cost is exponentially proportional to the itemset’s length. In other words, 

when the itemset length is going up, the decomposition overhead willdramatically enlarged. The data 

skewness problem is mainly induced by the decomposition operation, which in turn has a significant 

performance impact on FiDoop. The first step toward balancing load among data nodes of a Hadoop 

cluster is to quantitatively measure the total computing load of processing local itemsets. We achieve 

this first step by developing a workload-balance metric to quantify load balance among the data 

nodes. In Proposed System In base system having dimension reduction issue, in proposed we need to 

focus eliminate such problems. The system also focuses on SQL injection and prevention as well as 

data collusion attacks. Develop the system in HDFS 2.0 with MongoDB with 16 cluster node 

environment. Proposed system use HDFS framework with R package called R-hadoop. The proposed 

system can extends up to node cluster. We also use transaction management system base on ACID 

properties which will help for avoid data inconsistency. 

CONCLUSION 

To solve the scalability and load balancing challenges in the existing parallel mining algorithms for 

frequent itemsets, we applied the MapReduce programming model to develop a parallel frequent 

itemsets mining algorithm called FiDoop. FiDoop incorporates the frequent items ultrametric tree or 

FIU-tree rather than conventional FP trees, thereby achieving compressed storage and avoiding the 

necessity to build conditional pattern bases. FiDoop seamlessly integrates threeMapReduce jobs to 

accomplish parallel mining of frequent itemsets. The third MapReduce job plays an important role in 

parallel mining; its mappers independently decompose itemsets whereas its reducers construct small 

ultrametric trees to be separately mined. We improve the performance of FiDoop by balancing I/O 

load across data nodes of a cluster. 
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