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Abstract 

      The accuracy of an alignment between two protein sequences can be improved by including other detectably 

related sequences in the comparison. To optimize an approach that relies on aligning two multiple sequence 

alignments, each one including one of the two protein sequences. Thirteen different protocols for creating and 

comparing profiles corresponding to the multiple sequence alignments are implemented in the SALIGN command of 

MODELLER. A test set of 200 pair wise, structure-based alignments with sequence identities below 40% is used to 

benchmark the 13 protocols as well as a number of previously described sequence alignment methods, including 

heuristic pair wise sequence alignment by BLAST, pair wise sequence alignment by global dynamic programming 

with an affine gap penalty function by the ALIGN command of MODELLER, sequence-profile alignment by PSI-

BLAST, Hidden Markov Model methods implemented in SAM and LOBSTER, pair wise sequence alignment relying 

on predicted local structure by SEA, and multiple sequence alignment by CLUSTALW and COMPASS. The 

alignment accuracies of the best new protocols were significantly better than those of the other tested methods. The 

new method is currently applied to large-scale comparative protein structure modeling of all known sequences. 

Keywords:  protein sequence alignment, sequence profiles, comparative protein structure modeling 

 

1. INTRODUCTION 

       Nucleic acid and protein sequence alignments are central to many problems in biology, including gene 

assignment, phylogeny construction, protein structure modeling, protein design, and functional annotation of proteins. 

An alignment between two sequences of residues is usually calculated by optimizing an alignment scoring function. 

The two common ingredients of the scoring function are a gap penalty function and a matrix of substitution scores for 

matching every residue in one sequence to every residue in the other sequence. The alignment score is usually a sum 

of the gap penalties that depend linearly on the gap lengths and the pair wise substitution scores that depend on the 

matched residue types. The original and still widely used optimization method for sequence alignment is based on 

dynamic programming.  The scoring function and its optimization by dynamic programming have been improved for 

alignment accuracy and speed, and applied to a variety of alignment problems. 

 

1.1 BLAST and SATCHMO algorithm 

           One of the most significant improvements in alignment accuracy was achieved through the use of multiple 

sequence alignments and the corresponding sequence profiles. For proteins, a sequence profile lists a preference for 

the 20 standard amino acid residue types at each position in a given multiple sequence alignment. The PSI-BLAST 

program relies on the BLAST algorithm to collect homologs of a query sequence and construct its profile by 

iteratively scanning a sequence database is a comparison of the query sequence profile with each sequence in the 

database. A multiple sequence alignment can also be transformed into a Hidden Markov Model (HMM), a class of 

probabilistic models that are generally applicable to a time series or linear sequences. A particularly successful 

method in this class is implemented in the SAM package that outperforms other sequence-based methods for fold 

recognition.  

http://www.irjaet.com/


INTERNATIONAL RESEARCH JOURNAL IN ADVANCED ENGINEERING 
AND TECHNOLOGY (IRJAET) E - ISSN: 2454-4752 P - ISSN : 2454-4744 
VOL 3 ISSUE 2 (2017) PAGES 1758 - 1766 
RECEIVED : 05.03.2017  PUBLISHED : 20.03.2017   March 23, 2017  

1759  ©2017  R. Sangeethapriya .al.| http://www.irjaet.com 

       
 

 

 

 

 

 

           The SATCHMO algorithm in the LOBSTER package simultaneously constructs a similarity tree and compares 

multiple sequence alignments of each internal node of the tree using HMMs. The CLUSTALW program compares 

two multiple sequence alignments by scoring an alignment of two positions, one from each profile, as the average of 

all pair wise substitution scores for the amino acid residues in the two profiles. The LAMA program aligns two 

multiple sequence alignments by first transforming them into profiles and then comparing the two to each other by the 

Pearson correlation coefficient. Similarly, the FFAS program was developed to align two sequence profiles with each 

other. A related approach was also used to construct the ProtoMap database of protein sequence families.  ProtoMap 

database combined multiple structure and sequence comparisons to improve the accuracy of alignments of SH2 

domains. The COMPASS program was developed to locally align two multiple sequence alignments with assessment 

of statistical significance. These methods compare two profiles by constructing a matrix of scores for matching every 

position in one profile to each position in the other profile, followed by either local or global dynamic programming to 

calculate the optimal alignment. It was noted previously that profile profile alignment methods are capable of 

detecting more remote relationships compared to the sequence-profile methods, such as PSI-BLAST. Another 

significant improvement of the alignment accuracy in the low similarity range was achieved by considering protein 

structure information for one of the sequences in a pair wise comparison. The methods in this class include threading 

and 3D template matching. 

2. MULTIPLE SEQUENCE ALIGNMENT 

For each sequence in a pair of sequences to be aligned, a multiple sequence alignment with its homologs was 

prepared by scanning the no redundant protein sequence database at NCBI with the program PSI-BLAST. The 

scanning was performed without filtering out compositionally biased segments, was run for up to 20 iterations, and 

included all matches with an e-value smaller than 0.0005. Up to 1000 sequences with the most significant e-values 

were retained in the multiple sequence alignment. The default values were used for all other parameters. The multiple 

sequence alignment and the profile were saved after each iteration. The PSI-BLAST multiple sequence alignment of a 

sequence was defined to be the sequence-profile alignment with the most significant e-value from any of the 

iterations. It proceed by defining the 13 profile–profile alignment protocols in terms of four alternative schemes for 

transforming a multiple sequence alignment into a profile or a matrix and six alternative measures for comparison of 

two profiles. 

 

Another approach is implemented in the SEA program, which aligns a pair of remotely related sequences by 

optimizing a match between the predicted conformations of their short segments. The resulting alignments were more 

accurate than the pair wise sequence alignments by BLAST and ALIGN, as well as the profile-profile alignments by 

FFAS. For closely related protein sequence pairs with sequence identity over 40%, an accurate alignment is almost 

always trivial to obtain. In contrast, despite the methodological advances listed above, alignments in the so-called 

“twilight zone” of less than 30% sequence identity still contain many errors. Some pairs of related proteins have 

almost no correctly aligned positions when aligned by sequence-based alignments methods. Alignment accuracy in 

the twilight zone is crucial for several applications, including comparative protein structure prediction. To calculate an 

accurate comparative model, it is necessary to identify and correctly align at least one template structure to the target 

sequence. An incorrect alignment invariably leads to an inaccurate model, because none of the existing comparative 

model building methods can generally recover from an incorrect alignment.  

  

2.1 Sequence weighting 

Sequence weighting is part of the calculation of a sequence profile from a multiple sequence alignment, and is 

used to compensate for no uniform distribution of the homologs in the alignment. There are two different weighting 
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schemes. First, we tested the often used position-based sequence weighting that assigns low weights to 

overrepresented sequences and high weights to unique sequences. 

 

where ri is the number of different residue types at position i and ni,j is the frequency of the residue type in 

sequence j at position i. Second, we also tested our variation of the position-based sequence weighting that increases 

the weights of those sequences that are more similar to the query sequence. 

 

Where Oa(i,1),b(i,j) are the Blosum62 odds ratios for matching the residue type a in the query sequence with the 

residue type b in sequence j. 

2.2 Sequence Profile 

A sequence profile of a given set of similar sequences specifies a preference for each of the 20 standard amino 

acid residue types at each of the residue positions in the set. A number of different estimation schemes have been 

suggested, because a multiple alignment may not contain a sufficiently large number of homologs to calculate a 

statistically robust profile solely from the occurrence of each residue type in the multiple alignments. They generally 

depend on prior or expected probabilities of residue occurrences and residue-residue substitutions.  

First, profiles generated by pseudo-counting as implemented in the PSI-BLAST program. The use of pseudo-

counting for profile generation was chosen for its simplicity of implementation and comparable performance to other 

tested approaches.Second, profiles generated by pseudo-counting as implemented by us in the MODELLER-7 

program. The probability of a residue type a to occur at position i in a multiple alignment is estimated by 

 

 

Ni is the sum of the weights Wj
(1) (eq. 1) for the sequences that do not have a gap at position i. ni,a is the sum 

of the weights Wj
(1) for the sequences with residue type a at position i. Bi is the total number of pseudo-counts at 

position i and depends on the parameter m that is set to the optimal value of 5. bi,ais the number of pseudo-counts for 

residue type a at position i. Ma is the probability of residue type a in the background distribution that is obtained from 

the Blosum62 matrix. Ma,b are the Blosum62 probabilities for matching the residue type a in the query sequence with 

the residue type b in sequence j. Both ni,a/Ni and bi,a/Bi are estimates of Pi,a, based on the observed and pseudo-counts, 

respectively. Correspondingly, Pi,a is a weighted sum of the two estimates, with the contributions determined 
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by Ni and Bi. IfNi is larger than Bi, Pi,a is dominated by the observed counts, whereas if Bi is larger than Ni, Pi,a is 

dominated by pseudo-counts. Third, our variation of the Henikoff and Henikoff schema with sequences weighted 

proportionally to their similarity to the query sequence, using Wj
(2) (eq. 2) instead of Wj

(1) . 

2.3 Profile–Profile substitution scores 

An optimal alignment of two profiles P and Q would be obtained by relying on a matrix of probabilities Si,j 

that any pair of profile positions Pi and Qj are equivalent. It is not clear what the best definition of equivalent is and 

how to calculate such a probability of equivalence, given two profile distributions Pi and Qj. As a result are forced into 

a parametric approach, whereby we calculate a substitution score that approximates the probability of equivalence. 

Such substitution scores, together with a gap penalty function, can then be used to obtain an optimal alignment of two 

profiles by dynamic programming. Six recipes for calculating profile–profile substitution scores Si,j for each pair of 

profile positions i and j were tested. 

First, the dot product between two distributions Pi and Qi at profile positions i and j, respectively. 

 
Second, the correlation coefficient between two distributions Pi and Qj. 

 
Third, the Euclidean distance between two distributions Pi and Qi. 

 
Fourth, a substitution score based on the Jensen-Shannon divergence measure DJS for two distributions 

 

The R vector can be seen as the most likely parent distribution of Pi and Qj. DKL is the Kullback-Leibler 

distance, also called the “cross-entropy measure” in information theory. λ is a parameter between 0 and 1, set to 0.5 in 

this study. λ and its complement (1−λ) are the weights given to the Pi and Qj distributions, respectively.  

Fifth, for each position in a multiple sequence alignment, a pair wise residue substitution probability matrix 

was calculated as a weighted sum of the Blosum62 substitution probability matrix and the matrix of relative residue 

substitution frequencies observed at the given position in the multiple sequence alignment. Next, the substitution 

score for two multiple alignment positions i and j was calculated by averaging over these residue substitution 

probabilities for all pairs of residues containing a residue from each of the two compared positions. 
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where fa
(i) is the observed frequency of residue type a at position i in the first multiple alignment corrected for 

sequence weights as defined above (using equation 1), Ma,b
(i) is the substitution probability matrix for residue 

types a and b at position i in the first multiple alignment, Ma,b is the Blosum62 substitution probability matrix for 

residue types a and b, and ω1 and ω2 are scalar weights. Variable n is the number of the pair wise residue-residue 

substitutions within the multiple alignments at position i, and σ is a smoothing parameter. 

Sixth, the score Si,j
(6) was defined as the correlation coefficient between the corresponding values in two 

posterior substitution matrices Ma,b (i) and Mb,a (j) for positions i and j in the first and second multiple alignments, 

respectively. After the substitution scores were computed according to one of the six recipes above, they were scaled 

to fit the range from 0 to 1000. 

3. Alignment methods 

The testing pairs of sequences were aligned by (1) heuristic pair wise sequence alignment as implemented in 

BLAST 2.1.2 , (2) pair wise sequence alignment by global dynamic programming with an affine gap penalty function 

as implemented in the ALIGN command of MODELLER-7 , (3) sequence-profile alignment as implemented by PSI-

BLAST 2.1.2 , (4) Hidden Markov Model (HMM) as implemented in SAM 3.3.1 and LOBSTER, (5) pair wise 

sequence alignment based on matching predicted local structure as implemented in the SEA Web server, (6) multiple 

sequence alignment by CLUSTALW 1.81, (7) profile–profile alignments as implemented by COMPASS 1.24 , and 

(8) the 13 schemes of profile–profile alignment by global dynamic programming with an affine gap penalty function 

as implemented by the SALIGN command of MODELLER-7. 

For BLAST, a high e-value threshold of 100 was used for accepting an alignment between two sequences. 

Otherwise, the pair of sequences was ignored. The e-value is increased the threshold relative to the commonly used 

value of ~10−4 to produce the maximum number of pair wise alignments obtained from the BLAST program. All other 

parameters were kept at their default values.  

For ALIGN, the default parameters were used. They include the AS1 residue type similarity matrix calculated 

from the reference structure alignments, the initiation gap penalty u of −450, and the extension gap penalty v of −50, 

the penalty for a gap of n residue positions is u + v n. For PSI-BLAST, multiple sequence alignments of each one of 

the two sequences were calculated as described above. The sequence-profile alignment with the most significant e-

value from any of the iterations with either of the two sequences as queries was used as the PSI-BLAST alignment.  
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For SAM, the following protocol was used (R. Karchin, pers. comm.). The w0.5 script with default 

parameters was applied to build HMMs for the target and template sequences, using their PSI-BLAST multiple 

sequence alignments. Next, the program hmmscore in the SAM package was employed to align the HMM of the 

target and the template with the template and the target sequences, respectively, resulting in two generally different 

template-target alignments. The alignment with the most significant e-value as reported by the hmmscore program 

was selected. 

For LOBSTER, the COACH algorithm was used through the -coach option to align a multiple sequence 

alignment against a Hidden Markov Model. First, the program was used to build HMMs for the target and the 

template sequences, using their PSI-BLAST multiple sequence alignments. Next, we aligned the HMMs of the target 

and the template to the template and target sequences, respectively, resulting in two generally different template-target 

alignments. The alignment with the higher bit score as reported by LOBSTER was selected. 

For CLUSTALW, the profile alignment option with the default parameters was used. This option over the multiple 

sequence alignment option to benchmark CLUSTALW using the same profiles as for the other tested programs. For 

COMPASS, the default parameters were used to align the target and template multiple sequence alignments. 

For SALIGN, the 13 different protocols were tested, combining three different ways to construct a profile with four 

different ways to score a match between two profile positions, as well as two protocols based on posterior substitution 

probability matrices. The PSI-BLAST profiles cannot be used with the Jensen-Shannon scheme for calculating the 

profile–profile substitution scores because this scheme relies on probabilities Pi and Qj that are not reported in the PSI-

BLAST output.The alignment of two multiple sequence alignments by SALIGN requires approximately 40 sec for 

~250 sequences with about ~250 residues in each of the two profiles on a typical Pentium 4 computer. The total CPU 

time is dominated by the computing of the scoring matrix, rather than the dynamic programming step. This CPU time 

is approximately proportional to the product of the numbers of sequences in the two profiles and the profile lengths. 

 

 

Table 3.1: Thirteen protocols implemented in the SALIGN command in MODELLER-7     
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4. Training and testing alignment sets 

To improve the accuracy of comparative protein structure modeling, the reference alignments were pair wise, 

structure-based alignments. They were extracted from our comprehensive database of pair wise structure-based 

alignments, DBAli. The alignments in DBAli were calculated by superposing all pairs of proteins of known structure 

in the Protein Data Bank that are classified into the same H class in the CATH database  using the program CE. There 

are 33,920 such alignments with a Z-score higher than 3.8 .  

     
                                     A) Training Set                    B) Testing Set 

Figure 4.1: Composition of the 300 reference alignments that constitute the training and testing sets. (A) 

Distributions corresponding to the 100 alignments in the training set. (B) Distributions corresponding to the 

200 alignments in the testing set. 

First, 387 alignments were extracted from DBAli by requiring up to 40% sequence identity, at least 100 aligned 

residues, at least 50% of the residues aligned, and that at least 90% of the residues of one chain are covered in the 

alignment. Second, structure pairs that did not have at least 50% of the residues in the shorter chain aligned by 

MAMMOTH were also eliminated, resulting in the final set of 300 reference alignments. These 300 alignments were 

randomly divided into the training and testing sets of 100 and 200 alignments, respectively. The training set of 

alignments was used to optimize the gap initiation and gap extension penalties for all of our alignment protocols and 

the parameter σ for the two posterior substitution probability matrix protocols, and the testing set was used to assess 

the performance of all examined alignment methods. The PDB chain identifiers, chain lengths, percentage sequence 

identities, root-mean-square deviations (RMSDs) for the aligned Cα atoms, average percentages of the aligned 

Cα atoms, and percentages of structurally equivalent residues (below) are listed separately for the training and testing 

alignments. 

4.1 Measures of alignment accuracy 

The accuracy of an alignment was measured by relying on the aligned native structures extracted from the 

PDB. First, the RMSD between the corresponding Cα atoms in the two structures was calculated upon rigid-body 

least-squares superposition of all the Cα atoms, as implemented in the SUPERPOSE command of MODELLER. 

Second, the percentage of structurally equivalent positions was defined as the percentage of the Cα atoms in 

the shorter of the sequences that are within a certain cutoff of the corresponding atoms in the superposed structure. 

The structure overlap quoted is the average over all cutoffs. Additionally, the alignment methods were assessed by the 

percentage of alignments with the structure overlap higher than 30%, structure pairs with at least as much overlap 

have the same fold. 
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Table 4.1.1: Accuracy of the SALIGN protocols 

The accuracy of the alignment comparison through with the CE structure-based alignment. First, the fraction of 

correctly aligned positions was defined as the percentage of positions in the tested alignment that were identical to 

those in the CE structure-based alignment, the residue-gap matches are ignored in this calculation. 

Secondly, the shift score, which ranges from e for two completely different alignments to 1 for identical alignments, 

was also calculated. The optimal gap initiation and extension penalties for the 11 profile–profile alignment protocols 

were identified by maximizing the average percentage of correctly aligned positions for the training set of sequence 

pairs. The maximization scanned all combinations of the initiation penalties from −1000 to 0 in steps of 50 and the 

extension penalties from −200 to 0 in steps of 10. The gap initiation, gap extension, and the σ parameters for the two 

posterior substitution probability matrix protocols were optimized on a 3D grid, with σ ranging from 0.001 to 10.  

 

CONCLUSION  

In this study, we optimized alignments specifically for comparative protein structure prediction. We begin by 

describing 13 profile–profile alignment protocols, the training and testing alignment sets, and measures of alignment 

accuracy. There are 13 variations in the calculation of the profiles and the profile–profile substitution scores. The 

opening and extension gap penalties as well as the σ parameter were optimized separately for each one of the 13 

protocols, by relying on the 100 training alignments. To assess SALIGN and a variety of other alignment methods are 

used the 200 reference structure-based alignments. First, we assessed the differences in accuracy between the 13 

different SALIGN protocols. Next to compared two of the SALIGN protocols for profile–profile alignment by global 

dynamic programming to a heuristic pair wise sequence alignment (BLAST), a pair wise sequence alignment by 

global dynamic programming (ALIGN), a heuristic sequence-profile alignment (PSI-BLAST), two HMM methods (as 

implemented in SAM and LOBSTER), a pair wise sequence alignment by matching predicted local structures (SEA), 

and two profile–profile alignment methods (CLUSTALW and COMPASS). Finally, to illustrate the utility of our 

method of comparative protein structure modeling that benefit from profile–profile alignment. The results quantify the 

significant improvement in the accuracy of sequence alignment that is achieved by the use of multiple sequences. For 

this analysis, the alignment accuracy of a method was measured independently by the average shift score and CE 

overlap, both calculated for the 200 testing pairs of sequences. 
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