
INTERNATIONAL RESEARCH JOURNAL IN ADVANCED ENGINEERING
AND TECHNOLOGY (IRJAET) E - ISSN: 2454-4752 P - ISSN : 2454-4744
VOL 3 ISSUE 5 (2017) PAGES 2314 - 2318
RECEIVED : 12.09.2017 PUBLISHED : 15.10.2017

 Oct 15, 2017

2314 ©2017 B.Sarumathy .al.| http://www.irjaet.com

WEB VULNERABILITY SCANNER TOOL USING

MULTISENSOR TRACK LEVEL FUSION BASED MODEL

PREDICTION

B.Sarumathy, PG Scholar, Dept Of Computer Science Engineering, Mailam Engineering College,

Villupuram.

E.Indra, Assistant Professor Of Computer Science Engineering,Mailam Engineering College,Villupuram.

Abstract:

 In recent years, internet applications have became enormously well-liked, and today they're habitually

employed in security-critical environments, like medical, financial, and military systems. Because the use

of internet applications has increased, the amount and class of attacks against these applications have also

matured. Moreover, the research community primarily targeted on detecting vulnerabilities, which results

from insecure information flow in internet applications like cross-site scripting and SQL injection have also

increased. Results show the effectiveness of our Tool, compared to the present ones in dimensions alike, it

has been observed that vulnerabilities go undetected once the existing ways of area unit used; it makes

offline analysis of applications time efficient; and finally, it reduces the runtime observation overhead.

Keywords: SQl, Injection, Alike, Runtime.

1. INTRODUCTION

 Today, the web may be an international network infrastructure that covers the complete world and

connects many a lot of users. The bulk of the in public offered info on the web is formed offered via the

planet Wide internet (WWW) or “the Web”. As a result of the simplicity of its use and its high accessibility,

the online has become the dominant method for folks to go looking for info, socialize, perform money

transactions, etc. Today, the web may be an international network infrastructure that covers the complete

world and connects many users. The bulk of the information offered in public domain on the web is formed

by World Wide Web (WWW) or “the Web”. As a result of the simplicity of its use and its high accessibility,

the Web has become the dominant method for people to go looking for information, to socialize with

friends and to perform financial transactions, etc.

The internet applications square measure habitually utilized in security-critical environments, like medical,

financial, and military systems. Sadly, because the use of internet applications for crucial services has

exaggerated, the amount and class of attacks against internet applications has also grown rapidly. The

interaction of code and information from numerous sources within the internet applications and browsers

has resulted in the emergence of behaviors that might threaten the confidentiality, integrity, and

convenience properties of the infrastructure on that the online applications and the internet browsers.

Injection, cross-site scripting (XSS), cross-site request forgery (XSRF), etc. are some examples of

vulnerabilities that might permit malicious attacks on internet applications and their infrastructure.

http://www.irjaet.com/

INTERNATIONAL RESEARCH JOURNAL IN ADVANCED ENGINEERING
AND TECHNOLOGY (IRJAET) E - ISSN: 2454-4752 P - ISSN : 2454-4744
VOL 3 ISSUE 5 (2017) PAGES 2314 - 2318
RECEIVED : 12.09.2017 PUBLISHED : 15.10.2017

 Oct 15, 2017

2315 ©2017 B.Sarumathy .al.| http://www.irjaet.com

Descriptions of those vulnerabilities are often found within the list of ten highest internet application

security vulnerabilities printed by Open internet Application Security Project (OWASP) in 2010 [1].

Among all the vulnerabilities listed, OWASP ranks injection vulnerabilities as the most rife. One extreme

step to counter such attack would be to remove any user input to internet applications; such an action is

impractical for any internet application that interacts with end-users. An internet application while not

taking any input has been restricted in its use, and it also doesn't have the flexibility to question the user as

to show any useful information.

2. RELATED WORK

 SQL injection attacks occur once the inputs to internet applications attack the back-end layers of the

net servers. Typical web application architecture is shown in Figure 1. The internet applications generate

websites that are displayed on the internet browser. These applications allow the user and the host machine

to interact with each other. Most internet applications permit their users to input information, which further

determines the management flow and also the output of the net application. An internet server sends this

information to the back-end servers containing database.

Fig.1.Architecture

The back-end servers generates the results and returns them to the net application, which then displays the

results to the user using an application program. A malicious user of the net application will manipulate the

inputs in order to make that application vulnerable, thereby generating SQL injection attacks. To check any

entry, the user enters his user name and password using HTML scripts provided at the back-end of online

application. When the application receives any input the HTML script using some procedure generates a

http://www.irjaet.com/

INTERNATIONAL RESEARCH JOURNAL IN ADVANCED ENGINEERING
AND TECHNOLOGY (IRJAET) E - ISSN: 2454-4752 P - ISSN : 2454-4744
VOL 3 ISSUE 5 (2017) PAGES 2314 - 2318
RECEIVED : 12.09.2017 PUBLISHED : 15.10.2017

 Oct 15, 2017

2316 ©2017 B.Sarumathy .al.| http://www.irjaet.com

SQL question. As a result, the attacker code is granted access to security-critical data that was issued by (or

is associated with) the trusty website. The aim of XSS attack is to bypass the same-origin policy enforced

by web browsers while executing the client-side code. This policy doesn't permit scripts and documents

loaded from one website to access properties of documents, like cookies, issued by different sites. This

prevents malicious net applications from viewing and modifying security-sensitive data related to different

sites.

3. PROPOSED SYSTEM

 Our work is expounded to many areas of active analysis, like explanation and victimization

specifications for bug finding, vulnerability analysis, and attack detection for net applications. During this

section, we have a tendency to describe the foremost seminal and fascinating works in these areas with the

intent of highlight the main trends and achievements in these areas of analysis, and to place the work

represented during this paper within the context of previous work. Another approach conjointly supported

static taint propagation analysis, to the detection of input validation vulnerabilities in PHP applications. A

flow sensitive, inter- procedural and context-sensitive information flow analysis is employed to spot intra-

module XSS and SQL injection vulnerabilities. The approach is enforced in a very tool, known as Pixy that

is that the most complete static PHP analyzer in terms of the PHP options shapely. To the simplest of our

information, it's the sole publicly-available tool for the analysis of PHP-based applications.

 The pre- and post-conditions of perform. The preconditions for perform contain a derived set of

memory locations that have to be compelled to be alter before the perform invocation, whereas the post

conditions contain the set of parameters and international variables that area unit alter within perform. To

model the results of cleansing routines, the approach uses a programmer-provided set of attainable cleansing

routines, considers sure types of casting as a cleansing method, and, additionally, it keeps an information

of sanitizing regular expressions, whose effects area unit specific by the technologist. Once perform

summaries area unit computed, they're utilized in inter-procedural analysis to look for attainable SQL

injections.

In this section we tend to explain the small print relating to our tool. However before discussing concerning

the tool it's necessary to outline some terms. Every web-based application is developed to use by some

users. Hence, from currently forward by the term “user” means that the user of the net primarily based

application. On the opposite hand, the projected tool Web Vulnerability Scanner (WVS) is additionally

developed for a few users (normally for the lead developers who do final code verification of Associate in

an application) and those we mention them as “tool-user”. Additionally we tend to decision every doable

SQLI attack as “threat”. A threat in line n of file index.php means, line range n of the file index.php

executes Associate in Nursing SQL statement and it's going to not be safe. Note that, threat doesn't mean

that the SQL statement is often unsafe, it solely tells that there could also be a clear stage of attack. The

detail verification has got to be done by the tool-user manually. Later during this section we tend to

explained as why it's necessary to verify every threat manually.

http://www.irjaet.com/

INTERNATIONAL RESEARCH JOURNAL IN ADVANCED ENGINEERING
AND TECHNOLOGY (IRJAET) E - ISSN: 2454-4752 P - ISSN : 2454-4744
VOL 3 ISSUE 5 (2017) PAGES 2314 - 2318
RECEIVED : 12.09.2017 PUBLISHED : 15.10.2017

 Oct 15, 2017

2317 ©2017 B.Sarumathy .al.| http://www.irjaet.com

4. ANALYSIS

 The unsafe statements have risk to rely upon dynamic variables. We‟ve written an algorithmic operate

to visualize every SQL statement. The statement declares safe if all its relying variables (not simply direct

dependents, however all the hierarchic dependence) are eventually connected with static variables.

Otherwise, a threat generates with the list of all dynamic variables which will be connected with this

statement. All such threats are keep in Array List (say threat List). Once the threat detection part is over we

tend to show the content of threat List with associate degree interactive GUI (java JTable). Additionally we

will mark every threat as verified when confirming it as safe. The marked threats won't be visible for future

run till we tend to forcefully wish to try and do therefore. We have experimented WVS on all kind of

applications. Table I gives the list of applications on which we have tested our tool. Experiments found that

our proposed tool saves 40-50% of time as compared to manual verification with the help of some text

processing commands like grep.

Fig.2.Final Analyzer

CONCLUSION

 In recent years, internet applications have become hugely ubiquitous, and these days they're habitually

utilized in numerous security-critical environments. Because the use of internet applications for essential

services has accumulated, the amount and class of attacks against these applications have full-grown.

Moreover, the analysis communities primarily targeted on effort vulnerabilities that result from insecure

information flow in internet applications, like cross-site scripting and SQL injection. Whereas relative

success was reached in characteristic appropriate techniques and approaches for managing this kind of

vulnerabilities, very little has been explored regarding vulnerabilities that result from blemished application

logic.

REFERENCES

1. The Open Web Application Security Project (OWASP), “OWASP top 10 web application security

risks in year 2010,” https://www.owasp.org/index. php/Top 10 2010-Main.

2. A. Klein. “Cross Site Scripting Explained” Technical report, Sanctum Inc., June 2002.

3. Al-Amro, Huyam, and Eyas El-Qawasmeh. "Discovering security vulnerabilities and leaks in ASP.

NET websites." In Cyber Security, Cyber Warfare and Digital Forensic (CyberSec), 2012

International Conference on, pp. 329-333.

4. IEEE, 2012. iv. Safelight of security advisors, “Cross Site Scripting (Stored XSS) demo." [Online]

http://www.youtube.com/watch?v=7MR6U2i5iI. Jan 2009.

http://www.irjaet.com/

INTERNATIONAL RESEARCH JOURNAL IN ADVANCED ENGINEERING
AND TECHNOLOGY (IRJAET) E - ISSN: 2454-4752 P - ISSN : 2454-4744
VOL 3 ISSUE 5 (2017) PAGES 2314 - 2318
RECEIVED : 12.09.2017 PUBLISHED : 15.10.2017

 Oct 15, 2017

2318 ©2017 B.Sarumathy .al.| http://www.irjaet.com

5. Safelight of securityadvisors, “Cross Site Scripting (Reflected XSS) demo." [Online]

http://www.youtube.com/watch?v=V79Dp7i4LRM. Jan 2009.

6. Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D. Lee, and S.-Y. Kuo. Securing Web Application Code

by Static Analysis and Runtime Protection. In Proceedings of the 12th International World Wide

Web Conference (WWW’04), pages 40–52, May 2004.

7. N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A Static Analysis Tool for Detecting Web

Application Vulnerabilities. In Proceedings of the IEEE Symposium on Security and Privacy, May

2006.

8. N. Jovanovic, C. Kruegel, and E. Kirda. Precise Alias Analysis for Static Detection of Web

Application Vulnerabilities. In Proceedings of the ACM SIGPLAN Workshop on Programming

Languages and Analysis for Security (PLAS’06), June 2006.

http://www.irjaet.com/

