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ABSTRACT  

This paper proposes a machine learning model based on the co-existence of static features for 

Android malware detection. The proposed model assumes that Android malware requests an 

abnormal set of co-existed permissions and APIs in comparing to those requested by benign 

applications. To prove this assumption, the paper created a new dataset of co-existed permissions and 

API calls at different levels of combinations, which are the second level, the third level, the fourth 

level and the fifth level. The extracted datasets of co-existed features at different levels were applied 

on permissions only, APIs only, permissions and APIs, and APIs and APIs frequencies. To extract the 

most relevant co-existed features, the frequent pattern growth (FP-growth) algorithm, which is an 

association rule mining technique, was used. The new datasets were extracted using Android APK 

samples from the Drebin, Malgenome and MalDroid2020 datasets. To evaluate the proposed model, 

several conventional machine learning algorithms were used. The results show that the model can 

successfully classify Android malware with a high accuracy using machine learning algorithms and 

the co-existence of features. Moreover, the results show that the achieved classification accuracy 

depends on the classifier and the type of co-existed features. The maximum accuracy, which is 98%, 

was achieved using the Random Forest algorithm and the co-existence of permissions features at the 

second combination level. Furthermore, the results show that the proposed approach outperforms the 

state-of-the-art model. Using Malgenome dataset, the proposed approach achieved an accuracy of 

about 98%, while the state-of-the-art achieved an accuracy of about 87%. In addition, the experiments 

show that using the Drebin dataset, the proposed approach achieved an accuracy of about 95%, while 

the state-of-the-art achieved an accuracy of about 93%. 

 

1. INTRODUCTION 

Smartphone market is growing immensely. According to the ICD report [1], it is estimated that by 

2024, the annual sales of mobile phones will reach more than 351 million units globally. Among the 

several mobiles operating systems, Android is the dominant operating system with over 2.5 billion 

active users across over 190 countries [2]. The wide range of capabilities offered by smartphones and 

the rising number of activities carried out by their users, including social networking, online banking, 



INTERNATIONAL RESEARCH JOURNAL IN ADVANCED ENGINEERING 
AND TECHNOLOGY (IRJAET) E - ISSN: 2454-4752 P - ISSN : 2454-4744 
VOL 9 ISSUE 6 (2023) PAGES 25-34 
RECEIVED:05.11.2023 PUBLISHED:30.12.2023 

 Dec 30, 2023  

26 ©2023 V.Vishal, M.Anitha |http://www.irjaet.com 

 

 

and gaming, has given rise to very serious concerns about device security and personal privacy. Since 

Android is an open-source platform, it is easy for malware developer to launch their attacks and 

develop Android malware apps that pose severe harm. Obviously, the impact of Android malware is 

rising in modern society [3], [4]. Mobile malware is constantly updated with new features to evade 

detection by anti-malware scanners. Android malware applications usually use three types of 

breakthrough techniques to get access to the user’s devices.  

1) Repackaging: is one of the common techniques used to install malware applications. This approach 

misuses popular applications as the developers install popular applications, disassemble them, inject 

their malicious code, re-assemble them, and upload the injected app to the third party to be 

downloaded by users.  

2) Update: The developer here may still be using repackaging, but instead of closing the malicious 

code to the app, they set an update component that even downloads malicious code at runtime.  

3) Downloading: The most common technique where the developer encourages users to download 

their apps is by attracting them to download interesting and useful apps. However, these apps are 

malicious and may harm their devices. 

2. RELATE WORK 

 Many machine learning approaches have been developed to prevent or detect Android 

malware. Machine learning algorithms use static, dynamic and hybrid features for static, dynamic and 

hybrid analysis, respectively. The following subsections discusses some related work that used 

different types of machine learning approaches, and Table 1 compares between the related work. We 

should mention here that these algorithms score each feature alone. In the contrary, this paper relies 

on the co-existence of features to detect Android malware. To the best of our knowledge, the proposed 

work in this paper is the first work that focuses on the co-existence of features at different levels, and 

uses this variety of combinations. 

A. STATIC BASED APPROACHES: 

 Using static features to detect Android malware have been studied by many authors. Table 1 

compares between the discussed related work in this section. Tiwari and Shukla [10] proposed a 

machine learning method using logistic regression to detect Android malware based on permissions 

and API features. The authors tested the model using the full features dataset and a reduced features 

dataset that consists of 131 features. The authors claimed that their model achieved an accuracy of 

97.25% and 95.87% using full features and reduced features datasets respectively. Potha et al.  

B. DYNAMIC AND APPROACHES: 

 This section discusses some related work about using dynamic features in detecting Android 

malware. Table 1 compares between the discussed related work in this section. Afonso et al. [22] 

proposed a model based on dynamic analysis of Android applications. The proposed system 



INTERNATIONAL RESEARCH JOURNAL IN ADVANCED ENGINEERING 
AND TECHNOLOGY (IRJAET) E - ISSN: 2454-4752 P - ISSN : 2454-4744 
VOL 9 ISSUE 6 (2023) PAGES 25-34 
RECEIVED:05.11.2023 PUBLISHED:30.12.2023 

 Dec 30, 2023  

27 ©2023 V.Vishal, M.Anitha |http://www.irjaet.com 

 

 

dynamically detects malware using Android API calls and system call traces. The authors used 

different datasets from Malgenome project [17] and Virusshare [14] with a total of 7520 apps. The 

proposed model tested several classification algorithms and achieved an accuracy of 96.66%. 

However, their approach failed to monitor the malicious behavior in some cases. For example, when 

an app fails to connect to the Internet, the model stops executing the app without gathering 

information about any malicious actions.  

C. HYBRID BASED APPROACHES: 

 Unlike the approaches discussed in the previous two subsections, some authors relied on 

using hybrid approaches that combines both static and dynamic features to detect Android malware. 

Table 1 compares between some hybrid approaches that are discussed in this subsection. Kouliaridis 

et al. [4] proposed a tool, called Androtomist, that can apply static and dynamic analysis of Android 

applications. Androtomist is available as open source software and has two modes: novice and expert 

users. The authors tested Androtomistusing three Android datasets and several machine learning 

classifiers. 

TABLE 1. Comparison between some related work 
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3.DATA PROCESSING 

1) HANDLING IMBALANCED DATASETS  

This paper used the random under-sampling method before generating the combinations and 

during the classification process. The combinations construction must rely on roughly the same 

number of malware and benign samples to get a reliable system, and build it using real data that can 

distinguish malware from benign applications. The random undersampling technique was used 

because it is a simple method for removing samples without imposing any constraints on the data. 

Furthermore, several experiments have shown that the accuracy does not greatly change in every 

experiment when using random under-sampling. 

2) APK DECOMPILING  

The Manifest file, the classes.dex file and the raw resources like images and layout files are 

all packed in an Android APK file. Dex2jar [11] and ApkTool [28] are two open-source APK 

decompiling tools used in this work. The ApkTool has been chosen because it is powerful and simple 

to implement. These tools process one APK file at a time. Therefore, a python code script has been 

developed to decompile all APK files at the same time. Some APKs cannot decompile due to errors in 

the file extension by the developer, therefore, they were removed. After removing these files, 2081 

APK files were decompiled from the CIC_MalDroid2020 dataset [36]. Then, their Manifest files and 

smali files were used for the extraction of permissions and static APIs.  

4.THE CO-EXISTENCE METHOD: 

The proposed approach assumes that a malware requests a unique set of co-existed 

permissions and APIs, which are different from those requested by benign Android applications. 

Therefore, this paper constructed different datasets for the co-existing of the two types of features 

(Permissions, API calls) at different combination levels (level2, level3, level4, level5). The following 

subsections explain this process. 

1.FREQUENT PATTERNS EXTRACTION  

The effectiveness of frequent pattern-based classification is discussed in [15].The authors 

showed that the infrequent patterns may disturb the model due to their limited discriminative power. 

Therefore, they emphasized on the importance of selecting a reasonable minimum support threshold. 

Moreover, they explained that a frequent 

 pattern has two properties: every pattern is a combination of single features, and they are 

frequent. Using the combination of features converts the feature space into a non-linear feature 

combination, which increases the new feature space expressive power. We believe that the feature co-

existence technique captures more underlying semantics than single features, and reduces the number 

of base features that depend on them to detect malware. Moreover, we realize that the combinations of 

permissions and APIs can be effective in detecting malicious apps. 
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 2) FP-GROWTH  

Data mining helps in extracting information from a dataset to identify patterns and meaningful data. 

The association rule data mining technique tends to find interesting patterns in transactional data. 

Two main techniques are used in association rule generation: FP-growth and Apriori algorithms. 

Agrawal et al. [18] proposed a fast algorithm for mining association rules called the FP-growth 

method, which is used in this paper. FP-growth is a divide and conquer strategy that consists of two 

steps: building an FP-Tree and extracting the frequent itemset from the FP-Tree without considering 

candidates generations. 

 
 

In this research, the FP-growth association rule mining technique was applied to a dataset of binary 

and single features to extract frequent patterns at different feature set sizes and to use them as co-

existing features in classification. The FP-growth algorithm is used to extract frequent patterns at 

different set of levels based on the frequency of these features in datasets. Several experiments were 

conducted using different number of top-frequent patterns (50, 75, 100, 150) to select the best number 

of combinations to be used as a feature in the new conditional dataset. 150 combinations at all levels 

for all datasets were selected, as this number of combinations achieved the best detection accuracy. 

Figure 1 shows the system flow from balancing the dataset, extracting co-existence combinations, 

building a new dataset based on highly frequent patterns as a feature, and then applying machine 

learning models for classification. 

3) THE LEVELS OF FEATURES CO-EXISTENCE 

 Four levels of features co-existence are considered in this paper, which are level 2, level 3, level 4, 

and level 5. To clarify this process, suppose that the dataset consists of five APK samples and the 

extracted permissions features are (READ_SMS, READ_PHONE_STATE, WRITE_SMS, 

INTERNET, and PHONE_CALL). Table 2 shows an example of the co-existence of permissions at 
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every level. Table 3 shows an example of the co-existence of permissions features in the dataset 

APKs at level 2. The values in the dataset are based on the analysis of feature set requests by the 

apps. If the app requests a feature set in a given column, the value is 1, otherwise it is 0. For example, 

the first column value is 1 if apps request (READ_SMS and SEND_SMS), otherwise the value is 0. 

This dataset is fed into machine learning algorithms to build a model that can differentiate malware 

from benign applications based on highly co-existed features. 

 

TABLE 2. Examples of permissions co-existence at different levels 

 

 
 

TABLE 3. An example of the permissions co-existence at level 2 in the dataset 

 

 
 

A. SELECTING THE TOP FREQUENT CO-EXISTED FEATURES: 

 Highly frequent candidates will not be the best discriminative patterns as they appear in a 

large portion of the dataset in different classes. Similarly, very low-frequent candidates may disrupt 

the model’s accuracy due to overfitting. The best co-existence combination is the one that is highly 

frequent in malware and low or non-frequent in benign applications and vice versa. 

 The proposed technique extracts the top 150 frequent feature combinations (co-existence), 

using FP-Growth, at different levels that are requested by applications frequently, as discussed in third 

section. The models were built on these combinations as features to measure their effectiveness in 

classifying malware from benign applications. The model chose this number of top features 

combinations since it achieved the best accuracy results; the proposed model tested the classifiers 

algorithms using different number of combination features, which are 50, 75, 100 and 150, from the 

different combinations of features co-existence extracted from CIC_MalDroid2020 dataset. The 

results using Random Forest are shown only in this paper since Random Forest achieved the best 

accuracy as will be shown in subsequent sections and since the experiments on the other classifiers 

lead to the same conclusion. The results are shown in in Tables 4, 5 and 6. 
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B. RESULTS USING CIC_MALDROID2020 DATASET: 

 This section discusses the results of testing the machine learning algorithms using different 

features co-existence, which were extracted from CIC_MALDROID2020 Dataset. The experiments 

were conducted at the different levels of co-existence 2,3,4 and 5. Figure 2, Figure 3 and Figure 4 

show the results of these experiments. Figure 2 shows the results of testing the machine learning 

algorithms using the permissions features only at different  

 

TABLE 4. Accuracy of the random forest classifier for API co-existence in the 

CIC_MALDROID2020 dataset at different co-existence levels and different number of top relevant 

combinations.   

 

TABLE 5. Accuracy of the random forest classifier for permission co-existence in the 

CIC_MALDROID2020 dataset at different co-existence levels and different number of top relevant 

combinations.   

 

TABLE 6. Accuracy of the random forest classifier for permission-API co-existence in the 

CIC_MALDROID2020 dataset at different co-existence levels and different number of top relevant 

combinations. 

 

levels of co-existence. As shown in the figure, Random Forest, Decision Trees and SVM algorithms 

achieved the best and similar results at all co-existence levels; all of them achieved the highest 

accuracy, which is about 98%. Moreover, all algorithms achieved the best accuracy at the second 

level of co-existence. Similarly, Figure 3 shows the results of testing the machine learning algorithms 

using API features only at different levels of co-existence. The best accuracy, which is 95%, was 

achieved by Random Forest, Decision Trees and SVM algorithms at level 2. Obviously, the achieved 

accuracy using API features only is less than the accuracy achieved by the same algorithms when 

using permissions only co-existence. The results of testing machine learning algorithms using 

permissions-API features at different levels of co-existence are shown in Figure 4. As shown in the 

figure, the best accuracy, which is 98%, was achieved by the same algorithms at level 2. 
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Fig (b) 

 

 
 

 

Fig (c) 

 

 FIGURE 16. Accuracy comparisons between the proposed approach and the PermPair 

method. 
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approach in this paper utilizes the FP-growth method to analyze the co-existence of features from 

level 2 to level 5. Furthermore, the proposed approach considers different feature categories, 

permissions, APIs, and API frequency when determining the best feature category for co-existence-

based detection using machine learning techniques. The PermPair used the scoring technique to detect 

Android malware using Drebin and Malgenome datasets. Meanwhile, the proposed approach achieved 

its best accuracy using Random Forest algorithm. Table 7 shows the size of the common datasets in 

the proposed work and the Perm-Pair technique. Figure 16 shows the comparisons between both 

approaches using the same datasets at the second level of features co-existence. The results show that 

the proposed approach achieved an accuracy of about 98% and 95% using Malgenome and Drebin 

datasets respectively, while the PermPair technique achieved an accuracy of about 87% and 93% 

using the same datasets, respectively. 

5. CONCLUSION AND FUTURE WORK 

 The paper has proposed a novel approach for detecting Android malware using the FP-growth 

algorithm, which is an association rule mining technique that is used to extract the frequent patterns 

of features at different feature co-existence levels. Moreover, the paper has created three datasets of 

co-existed features, which are co-existed permissions features only, co-existed API features only and 

co-existed permissions and API features. Furthermore, the paper has created the features co-existence 

at four levels, which are level two, level three, level four and level five. To test the proposed 

approach, several machine learning algorithms were used, which are Random Forest, Decision Trees, 

Logistic Regression, SVM and KNN. The experiments have shown that Random Forest, DT and 

SVM algorithms achieved the best accuracy of about 98% at level 2 of co-existence using permission-

API co-existence in the CIC_MALDROID2020 dataset. Furthermore, the experiments have shown 

that all machine learning algorithms achieved the best results at the second level of features co-

existence. Moreover, the experiments have shown that using the frequent API co-existence is better 

than using API features in Android malware detection. That is, extracting API frequencies from each 

APK, converting frequencies to existence based on an average of API call frequencies as a threshold, 

and then applying the co-existence technique achieved better accuracy than using API co-existence 

without considering API calls frequencies. In addition, the paper has compared the proposed approach 

with the state-of-the-art model PermPair and has shown that the proposed approach has outperformed 

the state-of-the-art model (PermPair), which achieved an accuracy of about 93% and 87% using 

Drebin and Malgenome datasets, respectively. Meanwhile, the proposed approach Achieved an 

accuracy of about 95% and 98% using the same datasets. The results have shown that using the 

features co-existence is an effective method to detect Android. As a future work, we plan to evaluate 

the features co-existence approach using dynamic features. 
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